

## DEA National Electricity Grid Infrastructure SEA

The identification of suitable routing corridors for the efficient and effective expansion of Electricity Grid Infrastructure (EGI)

#### **Expert Reference Group Meeting**

11 June 2014





our future through science

### **Electrical Grid Infrastructure SEA Project Team**

| Project Coordinator: DEA |                 |  |
|--------------------------|-----------------|--|
| Dee Fischer              | Surprise Zwane  |  |
| Project Coordinator      | Project Manager |  |

#### **Project Partner: Eskom**

**Ronald Marais** Head of Strategic Transmission Planning Kevin Leask Chief Transmission Engineer

#### **Environmental Consultants: CSIR**

**Paul Lochner** SEA Project Leader Marshall Mabin EGI SEA Project Manager

#### Joint Service Provider: South African National Biodiversity Institute

Jeffrey Manuel and Fahiema Daniels









### Vision and Objectives of SEA

<u>Vision</u> for the SEA: Strategic Electrical Grid Infrastructure (EGI) is expanded in an environmentally responsible and efficient manner that responds effectively to the country's economic and social development needs.



#### **Objectives** of the SEA:

- Identify <u>strategic corridors</u> for future Electrical Grid Infrastructure (EGI) expansion.
- Determine <u>high level suitability</u> from an environmental, economic and social perspective.
- <u>Streamline the authorisation process</u> for EGI within the corridors.
- Enable Eskom greater flexibility when undertaking land negotiation.
- Enable upfront strategic investment
- <u>Promote collaborative governance</u> between authorising authorities.
- Develop a site specific development protocol.









#### **Identifying Strategic Corridors for EGI**

- Eskom Strategic Grid Plan Study: Formulates long term strategic transmission corridor requirements fro South Africa
- 20 year horizon, extended to 30 years for purposes of this study
- Based on range of generation scenarios, and associated strategic network analysis
- Three future scenarios considered:
  - The IRP 2010 base Scenario
    - Extended to 2040
  - Increased Renewable Scenario
    - Replace nuclear component with RE base generation equivalent
    - CSP (with storage)/ Wind with CCV of 30% / Natural Gas
  - Increased Import Scenario
    - Double imported power by 2030
    - Reduce coal & nuclear



#### **Comparing Demand Balances for each Generation Scenario**



www.csi

tience

# Inter-Province Power Transfers for IRP W60 CBA 2040 scenario



#### National Electrical Grid Infrastructure SEA\_Working Corridors



#### **Approach to SEA**

- No single approach to SEA can be applied to all circumstances
- Set of common principles for the application of SEA (Guideline Document: Strategic Environmental Assessment in South Africa, DEAT and CSIR, 2000)

| Content                         | Process                               |  |
|---------------------------------|---------------------------------------|--|
| Sustainability                  | • Flexible                            |  |
| Opportunities and constraints   | Strategic                             |  |
| Levels of environmental quality | Participative                         |  |
|                                 | Alternatives                          |  |
|                                 | Precaution and continuous improvement |  |

- Three broad categories of SEA:
  - Policy SEA
  - Spatial plan and regional SEA
  - Sector plan and programme SEA











## **Environmental Constraints Map**

- Impact of 'EGI on the Environment'
- A strategic level, GIS map that spatially represents the location and level of constraints associated with environmental features within the corridors
- Features considered can be separated into three categories:
  - The biophysical impact on the natural environment
    - Protected areas
    - Birds
  - The impact on the cultural or heritage significance of certain areas
    - World Heritage sites
    - National Heritage sites
  - Land use- areas zoned for land uses of strategic or national importance
    - Square Kilometre Array















### **Environmental Constraint Categories**

• Features categorised according to four levels of sensitivity as follows:

| Impact on EGI on Environment:<br>Constraints Categorisation |                                                                                                                                                                                                                                                         |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Level of Constraint                                         | Description                                                                                                                                                                                                                                             |  |  |  |
| 'No-Go'                                                     | The area is rated as extremely sensitive to the negative<br>impact of development. As a result the area will either<br>have very high conservation value, very high existing/<br>potential socio-ecocomic value or hold legal<br>protection status.     |  |  |  |
| High                                                        | The area is rated as being of high sensitivity to the<br>negative impact of development. As a result the area<br>will either have <b>high conservation value and or</b><br><b>existing/potential socio-economic value.</b>                              |  |  |  |
| Medium                                                      | The area is rated as being of medium sensitivity to the<br>negative impact of development. As a result the area<br>will either have mediums levels of conservation value<br>and or <b>medium levels of existing/potential socio-</b><br>economic value. |  |  |  |
| Low                                                         | Area is considered to have <b>low levels of sensitivity</b> in<br>the context of electricity grid infrastructure<br>development.                                                                                                                        |  |  |  |









### **Engineering Constraints Map**

- Impact of 'Environment on EGI'
- Identifies engineering constraints which are likely to impact on the life-time cost (both construction and maintenance) for the development of EGI in certain areas within the corridor
- Eskom line engineering team provided inputs into cost assumptions and classifications
- Cost impact of each constraint feature compared against a baseline cost index
- <u>Baseline Cost Index</u>: Lifetime cost associated with the construction and maintenance of 1km of 400kV line over a 20 year period assuming optimal environmental conditions for construction and maintenance.'
- Each constraint feature was introduced to the above scenario to determine impact on 'BLC index'















### **Engineering Constraint Categories**

• Features categorised according to four levels of sensitivity as follows:

| Impact of Environment on EGI:<br>Constraints Categorisation |                                                                                                             |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Level of Constraint                                         | Description                                                                                                 |  |  |  |
| 'No-Go'                                                     | The lifetime cost associated with development in this area is >3 times BLC index.                           |  |  |  |
| High                                                        | The lifetime cost associated with development in this area is between <b>2 and 3 times the BLC index.</b>   |  |  |  |
| Medium                                                      | The lifetime cost associated with development in this area is between <b>1.5 and 2 times the BLC index.</b> |  |  |  |
| Low                                                         | The lifetime costs associated with development in this area is < 1.5 times the BLC index.                   |  |  |  |









## **Opportunities Map**

- Identification of development opportunities to enhance the economic and social component of the assessment
- Polarise the location of the corridors in the direction of national, regional or local economic or social development opportunities/priorities.
- Also identify key 'pull' factors for route placement within the corridors to maximise benefit and reduce negative impacts:
  - Recycling of existing transmission lines
  - Aligning to existing linear developments
  - Make use of existing servitude purchases
  - Seek out visual screening opportunities
  - Target degraded/transformed land
- Input from government (provincial and local) essential to understanding pull factors

















#### **Consultation Process**

| Туре                               | Phase I           | Phase II          | Phase III         |
|------------------------------------|-------------------|-------------------|-------------------|
| Expert Reference Group             | >                 |                   | $\longrightarrow$ |
| Project Steering Committee         | >                 | $\longrightarrow$ | $\longrightarrow$ |
| Provincial Government Consultation | >                 |                   |                   |
| Local Government Consultation      |                   | $\longrightarrow$ |                   |
| Sector Specific Consultation       |                   | $\longrightarrow$ |                   |
| Online Consultation                | $\longrightarrow$ | $\longrightarrow$ | $\longrightarrow$ |





#### **Next Steps**

- Phase I completion
- Complete environmental data gathering exercise;
  - Input from provincial government, parastatals, NGOs
- Complete engineering sensitivity qualification exercise;
  - Eskom Line Engineering Team
- Undertake preliminary opportunities mapping exercise
  - Review of IDPs and SDFs
  - Digitise spatial data
- Phase II planning
- Identify key sector stakeholders,
- Local Government consultation



## Thank You

## Any Questions?

# https://egi.csir.co.za







